O.P.Code: 23HS0831

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year II Semester Regular & Supplementary Examinations June-2025 DIFFERENTIAL EQUATIONS & VECTOR CALCULUS

		(Common to All)			
Time: 3 Hours			Max.	Mark	ks: 70
		$\frac{PART-A}{(Answer all the Questions 10 x 2 = 20 Marks)}$			
1		State Newton's law of cooling.	CO1	L1	2M
1	a		CO1	L3	2M
	b	Find the Integrating Factor of $\frac{dy}{dx} + y = x$.			
	c	Define Wronskian of functions of y_1 and y_2 .	CO2	L1	2M
7)	d	Solve $\frac{d^2y}{dx^2} - a^2y = 0$	CO2	L3	2M
	e	Form the Partial Differential Equation by eliminating the arbitrary	CO3	L6	2M
		functions from $z = f(x) + e^y$. $g(x)$			
	f	Define Homogeneous Linear Partial differential equation with constant	CO ₃	L1	2M
		coefficients of n th order.			
	g	Define Solenoidal Vector.	CO4	L1	2M
	h	Find div r' where r' = $xi' + yj' + z\overline{k}'$	CO4	L3	2M
	i	Define Line integral.	CO5	L1	2M
	j	State Stoke's theorem. PART-B	CO5	L1	2M
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Solve $x \frac{dy}{dx} + y = \log x$	CO1	L3	5M
	b	Solve $(2x - y + 1)dx + (2y - x - 1)dy = 0$	CO ₁	L3	5M
		OR			
3		An inductance of 3H and a resistance of 12Ω are connected in series with	CO ₁	L1	10M
		an e.m.f of 90 V. If the current is zero when t=0, what is the current at the end of 1 sec?			
		UNIT-II			
4	a	Solve $(D^2 + 5D + 6)y = e^x$	CO ₂	L3	5M
	b	Solve $(D^2 + D + 1)y = x^3$	CO ₂	L3	5M
		OR			
5	a	Solve $(D^2 + 4)y = \tan 2x$ by the method of variation of parameters.	CO ₂	L3	5M
	b	Find the current 'i' in the L-C-R circuit assuming zero initial current and	CO ₂	L3	5M
		charge i , if R=80 ohms, L=20 henrys, C=0.01 farads and E=100 V.			
		UNIT-III			
6	a	Form the Partial Differential Equation by eliminating the constants from	CO ₃	L6	5M
		$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$. where '\alpha' is a parameter.			
	b	Form the Partial Differential Equation by eliminating the constants from	CO ₃	L6	5M
		log(az-1)=x+ay+b.			

	_		_
- 48	•	Ν.	n

7	Solve $x(y-z)p + y(z-x)q = z(x-y)$	CO4	L3	10M
	UNIT-IV			
8	a Find the directional derivative of $xyz^2 + xz$ at $(1,1,1)$ in the direction of	CO ₅	L3	6M
	normal to the surface $3xy^2 + y = z$ at $(0,1,1)$.			
	b Evaluate the angle between the normal to the surface $xy = z^2$ at the	CO ₅	L5	4M
	points $(4,1,2)$ and $(3,3,-3)$.			
	OR			
9	a Find curl f if $f = grad(x^3 + y^3 + z^3 - 3xyz)$.	CO ₅	L3	5M
	b Prove that $div(curl \overline{f}) = 0$.	CO ₅	L5	5M
	UNIT-V			
10	If $\vec{F} = (x^2 + y^2)\vec{i} - (2xy)\vec{j}$. Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ where 'C' is the	CO6	L5	10M
	rectangle in xy- plane bounded by $y = 0$; $y = b$ and $x = 0$; $x = a$.			
	OR			
11	Verify Stoke's theorem for the function $F = x^2\bar{\imath} + xy\bar{\jmath}$ integrated round	CO ₆	L3	10M
	the square in the plane $z = 0$ whose sides are along the lines)
	x = 0, y = 0, x = a, y = a.			

